

Peridynamic States

Stewart Silling

Multiscale Dynamic Material Modeling Department Sandia National Laboratories Albuquerque, New Mexico, USA

sasilli@sandia.gov

February 10, 2010

Objective of peridynamics

Some limitations of the standard theory of solid mechanics

- It is incompatible with the essential physical nature of particles and cracks.
 - Can't apply the PDEs directly.
- Can't easily include long-range interactions.

What the peridynamic theory seeks to do

- To predict the mechanics of continuous and discontinuous media with mathematical consistency.
 - Everything should emerge from the same continuum model.

Cracks vs. continua: Why this issue is important

- Typical approaches require some fix at the discretized level.
- LEFM adds extra laws that tell a crack what to do.
 - These laws are known only in idealized cases.

The reality of fracture may be too complex to represent in the form

$$\dot{a} = f(K)$$

Original concept (2000): Continuum as a network of bonds

ullet Any point ${\bf x}$ interacts directly with other points within a finite distance δ called the "horizon." Equation of motion:

$$\rho(\mathbf{x})\ddot{\mathbf{u}}(\mathbf{x},t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{u}(\mathbf{x}',t) - \mathbf{u}(\mathbf{x},t), \mathbf{x}' - \mathbf{x}) \ dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x},t)$$

How damage and fracture are modeled

- Bonds can break irreversibly according to some criterion.
- Broken bonds carry no force.

Bond breakage forms cracks "autonomously"

When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

Energy balance for an advancing crack

If the work required to break the bond ξ is $w_0(\xi)$, then the energy release rate is found by summing this work per unit crack area (J. Foster):

$$G = \int_0^\delta \int_{R_+} w_0(\boldsymbol{\xi}) \ dV_{\boldsymbol{\xi}} \ ds$$

There is also a version of the J-integral that applies in this theory.

EMU numerical method

 Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}, t) \ dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}, t)$$

$$\downarrow$$

$$\rho \ddot{\mathbf{y}}_{i}^{n} = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_{k}, \mathbf{x}_{i}, t) \ \Delta V_{k} + \mathbf{b}_{i}^{n}$$

Dynamic fracture in a hard steel plate

- Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
 - Mode-II loading at notch tips results in mode-I cracks at 70deg angle.
 - 3D EMU model reproduces the crack angle.

S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in *Computational Fluid and Solid Mechanics 2003*, K.J. Bathe, ed., Elsevier, pp. 641-644.

Dynamic fracture in membranes

EMU model of a balloon penetrated by a fragment

Early high speed photograph by Harold Edgerton (MIT collection)
http://mit.edu/6.933/www/Fall2000/edgerton/edgerton.ppt

Splitting and fracture mode change in composites

• Distribution of fiber directions between plies strongly influences the way cracks grow.

EMU simulations for different layups

Typical crack growth in a notched laminate (photo courtesy Boeing)

Limitations of the original theory

- Pair interactions imply Poisson ratio = 1/4.
- · Can't use traditional stress-strain models.
- Can't enforce plastic incompressibility.

New approach

- · Retain idea of bond forces.
- But bond forces depend on the collective deformation of the family.

Some references

• S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive modeling, J. Elast. 88 (2007) 151-184

DOI: 10.1007/s10659-007-9125-1

•R.B. Lehoucq, S.A. Silling, Force flux and the peridynamic stress tensor, JMPS 56 (2008) 1566-1577

DOI:10.1016/j.jmps.2007.08.004

•S.A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, J. Elast. 93 (2008) 13-37

DOI: 10.1007/s10659-008-9163-3

•S.A. Silling, Linearized theory of peridynamic states, J. Elast. (2010, to appear)

DOI: 10.1007/s10659-009-9234-0

Peridynamics basics: Horizon and family

ullet Any point ${\bf x}$ interacts directly with other points within a finite distance δ called the "horizon."

• The material within a distance δ of \mathbf{x} is called the "family" of \mathbf{x} , \mathcal{H} .

Why we need states

We want to express the idea that the strain energy density at x depends collectively on the deformation of the family of x.

Undeformed family of \boldsymbol{x}

Deformed family of \boldsymbol{x}

Standard: Peridynamic: $W\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right) \qquad W(\underline{\mathbf{Y}})$

Definition of a state

- \bullet A state is a function on \mathcal{H} .
- ullet A vector state $oldsymbol{A}$ maps each bond $oldsymbol{\xi}\in\mathcal{H}$ to a vector written $oldsymbol{A}\langleoldsymbol{\xi}
 angle.$
- Scalar states: $\underline{A}\langle \boldsymbol{\xi} \rangle$ is scalar valued.
- ullet Double states map pairs of bonds to second order tensors: $\underline{\mathbb{A}}\langle m{\xi}, m{\zeta}
 angle.$

$$\xi = \mathbf{x}' - \mathbf{x}$$

Bonds are defined in the reference configuration.

State fields

• States can depend on position (in the reference configuration) and time.

$$\underline{\mathbf{A}}[\mathbf{x},t]\langle \boldsymbol{\xi} \rangle$$

Dot product of two states

- ullet Suppose $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ are vector states.
- ullet Define a scalar called the dot product of $\underline{\mathbf{A}}$ and $\underline{\mathbf{B}}$ by

$$\underline{\mathbf{A}} \bullet \underline{\mathbf{B}} = \int_{\mathcal{H}} \underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{B}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}.$$

• In components,

$$\underline{\mathbf{A}} \bullet \underline{\mathbf{B}} = \int_{\mathcal{H}} \underline{A}_i \langle \boldsymbol{\xi} \rangle \underline{B}_i \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}.$$

Norm of a vector state:

$$||\underline{\mathbf{A}}|| = \sqrt{\underline{\mathbf{A}} \bullet \underline{\mathbf{A}}}$$

Dot product of two states, ctd.

ullet Suppose \underline{a} and \underline{b} are scalar states.

$$\underline{a} \bullet \underline{b} = \int_{\mathcal{H}} \underline{a} \langle \boldsymbol{\xi} \rangle \underline{b} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}.$$

• Point product is a scalar state:

$$(\underline{ab})\langle \boldsymbol{\xi} \rangle = \underline{a}\langle \boldsymbol{\xi} \rangle \underline{b}\langle \boldsymbol{\xi} \rangle$$

Functions of states, Frechet derivatives

- Let $\Psi(\mathbf{A})$ be a scalar valued function of a vector state.
- ullet How much does Ψ change if we change $\underline{\mathbf{A}}$? Suppose there is a vector state $\Psi_{\mathbf{A}}$ such that

$$\Psi(\underline{\mathbf{A}} + \underline{\mathbf{a}}) = \Psi(\underline{\mathbf{A}}) + \Psi_{\underline{\mathbf{A}}} \bullet \underline{\mathbf{a}} + o(||\underline{\mathbf{a}}||)$$

for any vector state $\underline{\mathbf{a}}$.

• $\Psi_{\mathbf{A}}(\underline{\mathbf{A}})$ is the Fréchet derivative of Ψ at $\underline{\mathbf{A}}$.

Less than first order.

Maurice Rene Frechet

Concept is similar to the gradient in \mathbb{R}^3 , e.g.,

$$f(\mathbf{x} + \delta \mathbf{x}) = f(\mathbf{x}) + f_{\mathbf{x}}(\mathbf{x}) \cdot \delta \mathbf{x} + o(|\delta \mathbf{x}|)$$

except that $\underline{\mathbf{A}}$ lives in an infinite dimensional space.

• Find the Frechet derivative of $\Psi(\underline{\mathbf{A}}) = \underline{\mathbf{A}} \bullet \underline{\mathbf{A}}$:

$$\Psi(\underline{\mathbf{A}} + \underline{\mathbf{a}}) = (\underline{\mathbf{A}} + \underline{\mathbf{a}}) \bullet (\underline{\mathbf{A}} + \underline{\mathbf{a}})$$

$$= \int (\underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle + \underline{\mathbf{a}} \langle \boldsymbol{\xi} \rangle) \cdot (\underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle + \underline{\mathbf{a}} \langle \boldsymbol{\xi} \rangle) dV_{\boldsymbol{\xi}}$$

$$= \underline{\mathbf{A}} \bullet \underline{\mathbf{A}} + 2 \int \underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{a}} \langle \boldsymbol{\xi} \rangle dV_{\boldsymbol{\xi}} + O(||\underline{\mathbf{a}}||)$$

$$= \Psi(\underline{\mathbf{A}}) + 2\underline{\mathbf{A}} \bullet \underline{\mathbf{a}} + O(||\underline{\mathbf{a}}||)$$

$$\Psi_{\underline{\mathbf{A}}} = 2\underline{\mathbf{A}}.$$

• Find the Frechet derivative of $\Psi(\underline{\mathbf{A}}) = \int |\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle| \ dV_{\boldsymbol{\xi}}$:

$$\Psi(\underline{\mathbf{A}} + \underline{\mathbf{a}}) = \int |\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle + \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle| dV_{\boldsymbol{\xi}}$$

$$= \int \sqrt{(\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle + \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle) \cdot (\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle + \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle)} dV_{\boldsymbol{\xi}}$$

$$= \int |\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle| \sqrt{1 + \frac{2\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle|^{2}} + \dots dV_{\boldsymbol{\xi}}$$

$$= \int |\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle| \left(1 + \frac{\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle|^{2}} + \dots \right) dV_{\boldsymbol{\xi}}$$

$$= \Psi(\underline{\mathbf{A}}) + \int \frac{\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle}{|\mathbf{A}\langle \boldsymbol{\xi} \rangle|} dV_{\boldsymbol{\xi}} + \dots$$

$$\Psi_{\underline{\mathbf{A}}} = \frac{\underline{\mathbf{A}}}{|\underline{\mathbf{A}}|}.$$

• Find the Frechet derivative of $\Psi(\underline{\mathbf{A}}) = \int \underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{A}} \langle \beta \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}$ where β is a constant:

$$\Psi(\underline{\mathbf{A}} + \underline{\mathbf{a}}) = \int (\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle + \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle) \cdot (\underline{\mathbf{A}}\langle \beta \boldsymbol{\xi} \rangle + \underline{\mathbf{a}}\langle \beta \boldsymbol{\xi} \rangle) dV_{\boldsymbol{\xi}}$$

$$= \Psi(\underline{\mathbf{A}}) + \int (\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{a}}\langle \beta \boldsymbol{\xi} \rangle + \underline{\mathbf{A}}\langle \beta \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle) dV_{\boldsymbol{\xi}} + \dots$$

$$= \Psi(\underline{\mathbf{A}}) + \int \underline{\mathbf{A}}\langle \beta^{-1}\boldsymbol{\zeta} \rangle \cdot \underline{\mathbf{a}}\langle \boldsymbol{\zeta} \rangle (\beta^{-3} dV_{\boldsymbol{\zeta}}) + \int \underline{\mathbf{A}}\langle \beta \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle dV_{\boldsymbol{\xi}} + \dots$$

$$= \Psi(\underline{\mathbf{A}}) + \int (\beta^{-3}\underline{\mathbf{A}}\langle \beta^{-1}\boldsymbol{\xi} \rangle + \underline{\mathbf{A}}\langle \beta \boldsymbol{\xi} \rangle) \cdot \underline{\mathbf{a}}\langle \boldsymbol{\xi} \rangle dV_{\boldsymbol{\xi}} + \dots$$

$$\Psi_{\underline{\mathbf{A}}}\langle\boldsymbol{\xi}\rangle = \beta^{-3}\underline{\mathbf{A}}\langle\beta^{-1}\boldsymbol{\xi}\rangle + \underline{\mathbf{A}}\langle\beta\boldsymbol{\xi}\rangle.$$

• Find the Frechet derivative of $\Psi(\underline{\mathbf{A}}) = \mathbf{c} \cdot \underline{\mathbf{A}} \langle \boldsymbol{\xi}_0 \rangle$ where \mathbf{c} is a constant vector and $\boldsymbol{\xi}_0 \in \mathcal{H}$ is a given bond:

$$\Psi(\underline{\mathbf{A}} + \underline{\mathbf{a}}) = \int \mathbf{c} \cdot (\underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle + \underline{\mathbf{a}} \langle \boldsymbol{\xi} \rangle) \Delta(\boldsymbol{\xi} - \boldsymbol{\xi}_0) \ dV_{\boldsymbol{\xi}}$$
$$= \Psi(\underline{\mathbf{A}}) + \int \Delta(\boldsymbol{\xi} - \boldsymbol{\xi}_0) \mathbf{c} \cdot \underline{\mathbf{a}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}$$

where Δ is the Dirac delta function. Therefore

$$\Psi_{\mathbf{A}}\langle \boldsymbol{\xi} \rangle = \Delta(\boldsymbol{\xi} - \boldsymbol{\xi}_0)\mathbf{c}.$$

• Find the Frechet derivative of $\Psi(\underline{\mathbf{A}}) = \int f(\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle) \ dV_{\boldsymbol{\xi}}$ where $f(\mathbf{v})$ is a scalar-valued function of a vector:

$$\Psi(\underline{\mathbf{A}} + \underline{\mathbf{a}}) = \int f(\underline{\mathbf{A}}\langle\boldsymbol{\xi}\rangle + \underline{\mathbf{a}}\langle\boldsymbol{\xi}\rangle) dV_{\boldsymbol{\xi}}$$

$$= \int (f(\underline{\mathbf{A}}\langle\boldsymbol{\xi}\rangle) + \operatorname{grad} f(\underline{\mathbf{A}}\langle\boldsymbol{\xi}\rangle) \cdot \underline{\mathbf{a}}\langle\boldsymbol{\xi}\rangle) dV_{\boldsymbol{\xi}}$$

$$= \Psi(\underline{\mathbf{A}}) + \int \operatorname{grad} f(\underline{\mathbf{A}}\langle\boldsymbol{\xi}\rangle) \cdot \underline{\mathbf{a}}\langle\boldsymbol{\xi}\rangle dV_{\boldsymbol{\xi}}$$

$$\Psi_{\underline{\mathbf{A}}}\langle \boldsymbol{\xi} \rangle = \operatorname{grad} f(\underline{\mathbf{A}}\langle \boldsymbol{\xi} \rangle).$$

Now we have the tools in place to talk about elastic materials

Strain energy at x depends collectively on the deformation of the family of x.

Standard: Peridynamic:

 $W\left(\frac{\partial \mathbf{y}}{\partial \mathbf{x}}\right)$ $W(\underline{\mathbf{Y}})$

Undeformed family of ${\bf x}$

Deformed family of \boldsymbol{x}

 $\underline{\mathbf{Y}}$ is the *deformation state* defined by

$$\underline{\mathbf{Y}}[\mathbf{x}, t]\langle \mathbf{x}' - \mathbf{x} \rangle = \mathbf{y}(\mathbf{x}', t) - \mathbf{y}(\mathbf{x}, t)$$

Deformation states can contain a lot of kinematical complexity

Undeformed bonds connected to x

Deformed bonds connected to ${\bf x}$

Compare this with standard theory in which small spheres are mapped into ellipsoids

Force state is the work conjugate to the deformation state

• Suppose we perturb the deformed bond $\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle$ by a virtual displacement $\boldsymbol{\epsilon}$. The resulting change in $W(\mathbf{x})$ is

$$\Delta W = \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \cdot \boldsymbol{\epsilon}$$

where $\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle$ is a vector.

ullet The "force state" $\underline{\mathbf{T}}$ is the work conjugate to $\underline{\mathbf{Y}}$:

$$\dot{W} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} = \int_{\mathcal{H}} \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \cdot \underline{\dot{\mathbf{Y}}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}$$

ullet $\underline{\mathbf{T}}$ is the Frechet derivative of $W(\underline{\mathbf{Y}})$ – analogous to a stress tensor.

Displace just one bond $oldsymbol{\xi}$

Potential energy and its first variation

• Total potential energy in \mathcal{B} :

$$\Phi = \int_{\mathcal{B}} (W(\underline{\mathbf{Y}}[\mathbf{x}]) - \mathbf{b}(\mathbf{x}) \cdot \mathbf{y}(\mathbf{x})) \ dV_{\mathbf{x}}$$

• Take first variation.

$$\delta\Phi = \int_{\mathcal{B}} (W_{\underline{\mathbf{Y}}}[\mathbf{x}] \bullet \delta \underline{\mathbf{Y}}[\mathbf{x}] - \mathbf{b}(\mathbf{x}) \cdot \delta \mathbf{y}(\mathbf{x})) \ dV_{\mathbf{x}}$$

$$= \int_{\mathcal{B}} \left[\int_{\mathcal{B}} W_{\underline{\mathbf{Y}}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle \cdot (\delta \mathbf{y}(\mathbf{x}') - \delta \mathbf{y}(\mathbf{x})) \ dV_{\mathbf{x}'} - \mathbf{b}(\mathbf{x}) \cdot \delta \mathbf{y}(\mathbf{x}) \right] \ dV_{\mathbf{x}}$$

$$= \int_{\mathcal{B}} \left[\int_{\mathcal{B}} (W_{\underline{\mathbf{Y}}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle - W_{\underline{\mathbf{Y}}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle) \ dV_{\mathbf{x}'} - \mathbf{b}(\mathbf{x}) \right] \cdot \delta \mathbf{y}(\mathbf{x}) \ dV_{\mathbf{x}}.$$

ullet Require $\delta\Phi=0$ for all variations $\delta {f y}$. Euler-Lagrange equation is

$$\int_{\mathcal{H}} (W_{\underline{\mathbf{Y}}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle - W_{\underline{\mathbf{Y}}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle) \ dV_{\mathbf{x}'} - \mathbf{b}(\mathbf{x}) = \mathbf{0}$$

for all $x \in \mathcal{B}$.

Equilibrium equation

• Define the *force state* by

$$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}}.$$

• Just showed that stationary potential energy implies the following equilibrium equation

$$\int_{\mathcal{H}} \left(\underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle \right) dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}) = \mathbf{0}$$

for all $\mathbf{x} \in \mathcal{B}$.

Bond force

• Equilibrium equation is

$$\int_{\mathcal{H}} \left(\underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle \right) dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}) = \mathbf{0}.$$

• Write this as:

$$\int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}) \ dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}) = \mathbf{0}.$$

• where the bond force is defined by

$$\mathbf{f}(\mathbf{x}', \mathbf{x}) = \underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle$$

$$\mathbf{f}(\mathbf{x}, \mathbf{x}') = -\mathbf{f}(\mathbf{x}', \mathbf{x})$$

- ullet In general the vector $f(\mathbf{x}',\mathbf{x})$ is not parallel to the deformed bond $\underline{\mathbf{Y}}\langle\mathbf{x}'-\mathbf{x}\rangle$.
- f has dimensions of force/volume².

Principle of virtual work

• Equilibrium equation is

$$\int_{\mathcal{H}} \left(\underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle \right) dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}) = \mathbf{0}.$$

ullet Multiply by a virtual displacement field ${f w}$ and integrate:

$$\int_{\mathcal{B}} \int_{\mathcal{B}} \left(\underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle \right) \cdot \mathbf{w}(\mathbf{x}) \ dV_{\mathbf{x}'} \ dV_{\mathbf{x}} + \int_{\mathcal{B}} \mathbf{b}(\mathbf{x}) \cdot \mathbf{w}(\mathbf{x}) \ dV_{\mathbf{x}} = \mathbf{0}$$

$$\int_{\mathcal{B}} \int_{\mathcal{B}} \underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle \cdot \left(\mathbf{w}(\mathbf{x}) - \mathbf{w}(\mathbf{x}') \right) \ dV_{\mathbf{x}'} \ dV_{\mathbf{x}} + \int_{\mathcal{B}} \mathbf{b}(\mathbf{x}) \cdot \mathbf{w}(\mathbf{x}) \ dV_{\mathbf{x}} = \mathbf{0}$$

ullet If we define ${f W}$ to be the deformation state associated with ${f w}$

$$\underline{\mathbf{W}}[\mathbf{x}]\langle \mathbf{x}' - \mathbf{x} \rangle = \mathbf{w}(\mathbf{x}') - \mathbf{w}(\mathbf{x})$$

then the PVW is

$$\int_{\mathcal{B}} \underline{\mathbf{T}}[\mathbf{x}] \bullet \underline{\mathbf{W}}[\mathbf{x}] \ dV_{\mathbf{x}} - \int_{\mathcal{B}} \mathbf{b}(\mathbf{x}) \cdot \mathbf{w}(\mathbf{x}) \ dV_{\mathbf{x}} = \mathbf{0}.$$

Compare classical PVW
$$\int (\boldsymbol{\sigma} \cdot \nabla \mathbf{w} - \mathbf{b} \cdot \mathbf{w}) \; dV = \mathbf{0}$$

Peridynamic equation of motion

• Equilibrium equation:

$$\int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}) \ dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x}) = \mathbf{0}.$$

where

$$\mathbf{f}(\mathbf{x}', \mathbf{x}) = \underline{\mathbf{T}}[\mathbf{x}] \langle \mathbf{x}' - \mathbf{x} \rangle - \underline{\mathbf{T}}[\mathbf{x}'] \langle \mathbf{x} - \mathbf{x}' \rangle$$

• Now use d'Alembert's principle to get the equation of motion:

$$\rho(\mathbf{x})\ddot{\mathbf{y}}(\mathbf{x},t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}',\mathbf{x},t) \ dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x},t)$$

Balance of linear momentum

• Total linear momentum in the body:

$$\mathbf{P} = \int_{\mathcal{B}} \rho \dot{\mathbf{y}} \ dV_{\mathbf{x}}.$$

• Then

$$\dot{\mathbf{P}} = \int_{\mathcal{B}} \rho \ddot{\mathbf{y}} \ dV_{\mathbf{x}}$$

$$= \int_{\mathcal{B}} \left[\int_{\mathcal{B}} \mathbf{f}(\mathbf{x}', \mathbf{x}, t) \ dV_{\mathbf{x}}' + \mathbf{b} \right] \ dV_{\mathbf{x}}$$
From equation of motion

b

ullet Recall $\mathbf{f}(\mathbf{x}',\mathbf{x},t) = -\mathbf{f}(\mathbf{x},\mathbf{x}',t)$, therefore

$$\dot{\mathbf{P}} = \int_{\mathcal{B}} \mathbf{b} \ dV_{\mathbf{x}}$$

• Rate of change of total momentum = total applied force.

 $\mathbf{f}(\mathbf{x}', \mathbf{x}, t)$

 $\mathbf{f}(\mathbf{x}, \mathbf{x}', t)$

Constitutive modeling

• A constitutive model relates the force state at a point $\mathbf x$ to the deformation state and any other variables:

• Simple material:

$$\underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}}, \mathbf{x})$$

Angular momentum balance

• Define the total angular momentum in the body by

$$\mathbf{A} = \int_{\mathcal{B}} \mathbf{y} \times \rho \dot{\mathbf{y}} \ dV_{\mathbf{x}}.$$

which says there are no "hidden" dofs that have angular momentum.

• Shorten the notation:

$$\mathbf{t} = \underline{\mathbf{T}}[\mathbf{x}, t] \langle \mathbf{x}' - \mathbf{x} \rangle, \qquad \mathbf{t}' = \underline{\mathbf{T}}[\mathbf{x}', t] \langle \mathbf{x} - \mathbf{x}' \rangle.$$

Then

$$\dot{\mathbf{A}} = \int_{\mathcal{B}} \mathbf{y} \times \rho \ddot{\mathbf{y}} \ dV_{\mathbf{x}}$$

$$= \int_{\mathcal{B}} \mathbf{y} \times \left[\int_{\mathcal{B}} (\mathbf{t} - \mathbf{t}') \ dV_{\mathbf{x}'} + \mathbf{b} \right] \ dV_{\mathbf{x}}$$
From equation of motion

Angular momentum balance: Nonpolar materials

$$\dot{\mathbf{A}} = \int_{\mathcal{B}} \int_{\mathcal{B}} \mathbf{y} \times (\mathbf{t} - \mathbf{t}') \ dV_{\mathbf{x}'} \ dV_{\mathbf{x}} + \int_{\mathcal{B}} \mathbf{y} \times \mathbf{b} \ dV_{\mathbf{x}}$$

$$= \int_{\mathcal{B}} \int_{\mathcal{B}} (\mathbf{y} - \mathbf{y}') \times \mathbf{t} \ dV_{\mathbf{x}'} \ dV_{\mathbf{x}} + \int_{\mathcal{B}} \mathbf{y} \times \mathbf{b} \ dV_{\mathbf{x}}$$

$$= -\int_{\mathcal{B}} \int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \times \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}} \ dV_{\mathbf{x}} + \int_{\mathcal{B}} \mathbf{y} \times \mathbf{b} \ dV_{\mathbf{x}}$$

Suppose the constitutive model is *nonpolar*:

$$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \times \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}} = \mathbf{0}$$

for all Y. Then

$$\dot{\mathbf{A}} = \int_{\mathcal{B}} \mathbf{y} \times \mathbf{b} \ dV_{\mathbf{x}}$$

which says there are no "hidden" moments.

Nonpolar materials

• Nonpolarity:

$$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \times \underline{\hat{\mathbf{T}}}(\underline{\mathbf{Y}}) \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}} = \mathbf{0} \qquad \forall \underline{\mathbf{Y}}$$

implies the global balance of angular momentum.

- Converse can be proved too (global balance of angular momentum implies material is nonpolar).
- We will adopt nonpolarity as a constitutive restriction.
- "No net moment on a point due to its own force state."

Ordinary and nonordinary

• Any force state can be decomposed into parts that are parallel and orthogonal to the deformed bonds:

$$\underline{\mathbf{T}} = \underline{\mathbf{T}}_{\parallel} + \underline{\mathbf{T}}_{\perp}$$

where

$$egin{aligned} & \underline{\mathbf{T}}_{\parallel}\langleoldsymbol{\xi}
angle &= (\underline{\mathbf{T}}\langleoldsymbol{\xi}
angle \cdot \underline{\mathbf{M}}\langleoldsymbol{\xi}
angle) \underline{\mathbf{M}}\langleoldsymbol{\xi}
angle \\ & \underline{\underline{\mathbf{M}}}\langleoldsymbol{\xi}
angle &= \underline{\underline{\mathbf{Y}}\langleoldsymbol{\xi}
angle}{|\underline{\mathbf{Y}}\langleoldsymbol{\xi}
angle|}. \end{aligned}$$

If

$$\underline{\mathbf{T}}_{\perp} = \underline{\mathbf{0}} \qquad \forall \underline{\mathbf{Y}}$$

then the material is ordinary, otherwise nonordinary.

Elastic materials: objectivity implies nonpolarity

• Objectivity: for any proper orthogonal tensor Q,

$$W(\mathbf{Q}\underline{\mathbf{Y}}) = W(\underline{\mathbf{Y}}).$$

i.e., energy doesn't change if you rigidly rotate the family after deforming it.

• Can show that any objective, elastic material is nonpolar:

$$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \times W_{\underline{\mathbf{Y}}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}} = \mathbf{0}.$$

Details: see Silling, "Linearized theory of peridynamic states," J. Elast. (2010).

 Result is important because usually objectivity is much easier to determine than nonpolarity directly.

Energy balance

ullet Recall that for an elastic material, since $\underline{\mathbf{T}} = W_{\mathbf{Y}}$,

$$W(\underline{\mathbf{Y}} + \delta \underline{\mathbf{Y}}) = W(\underline{\mathbf{Y}}) + \underline{\mathbf{T}} \bullet \delta \underline{\mathbf{Y}} + o(||\delta \underline{\mathbf{Y}}||)$$

therefore

$$\dot{W} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}}$$
 Compare stress power: $\dot{W} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}}$.

i.e.,

$$\dot{W}(\mathbf{x},t) = \int_{\mathcal{H}} \underline{\mathbf{T}}[\mathbf{x},t] \langle \mathbf{x}' - \mathbf{x} \rangle \cdot (\dot{\mathbf{y}}(\mathbf{x}',t) - \dot{\mathbf{y}}(\mathbf{x},t)) \ dV_{\mathbf{x}'}$$

Energy balance, ctd.

• For more general materials, the first law of thermodynamics is

$$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + h + r$$

where ε =internal energy density, h=net heat transport rate to \mathbf{x} per unit volume, r = heat source rate.

• This applies to any heat transport law, e.g.

$$h = K \nabla^2 \theta$$
 Fourier's law, local

or

$$h = \int_{\mathcal{B}} K(\mathbf{x}' - \mathbf{x}) (\theta(\mathbf{x}', t) - \theta(\mathbf{x}, t)) \; dV_{\mathbf{x}'} \qquad \text{nonlocal}$$

Free energy and 2nd law of thermodynamics

(joint work with Rich Lehoucq, thanks also to Eliot Fried)

• Since we're now dealing with temperature, have to include it in the internal energy:

$$\varepsilon(\underline{\mathbf{Y}}, \theta)$$
.

• Now try to find $\underline{\mathbf{T}}$ from ε . Define the *free energy* by

$$\psi = \varepsilon - \theta \eta$$

where $\eta=$ entropy.

Thus

$$\dot{\psi} = \dot{\varepsilon} - \dot{\theta}\eta - \theta\dot{\eta}.$$

Hence from 1st law

$$\dot{\psi} = \underline{\mathbf{T}} \bullet \underline{\dot{\mathbf{Y}}} + h + r - \dot{\theta}\eta - \theta\dot{\eta}.$$

Second law (Clausius inequality):

$$\theta \dot{\eta} \ge h + r$$
.

Free energy and the force state

• From last two equations,

$$\underline{\mathbf{T}} \bullet \underline{\dot{\mathbf{Y}}} - \dot{\theta} \eta - \dot{\psi} \ge 0.$$

• Assume $\psi = \psi(\underline{\mathbf{Y}}, \theta)$. Therefore

$$\underline{\mathbf{T}} \bullet \underline{\dot{\mathbf{Y}}} - \dot{\theta}\eta - (\psi_{\mathbf{Y}} \bullet \underline{\dot{\mathbf{Y}}} + \psi_{\theta}\dot{\theta}) \ge 0.$$

• Group terms:

$$(\underline{\mathbf{T}} - \psi_{\underline{\mathbf{Y}}}) \bullet \underline{\dot{\mathbf{Y}}} - (\eta + \psi_{\theta})\dot{\theta} \ge 0.$$

• Since $\underline{\mathbf{Y}}$ and θ can (in principle) be varied independently, conclude (from Coleman-Noll argument) that

$$\underline{\mathbf{T}} = \psi_{\underline{\mathbf{Y}}} \qquad \text{and} \qquad \eta = -\psi_{\theta}.$$

• Special case: if ψ is independent of θ , get an elastic material with $W=\psi.$

Rate dependent materials

• If we allow rate dependence in the model,

$$\psi = \psi(\underline{\mathbf{Y}}, \underline{\dot{\mathbf{Y}}}, \theta)$$

can show that the force state can be decomposed into equilibrium and dissipative parts:

$$\underline{\mathbf{T}} = \underline{\mathbf{T}}^e(\underline{\mathbf{Y}}, \theta) + \underline{\mathbf{T}}^d(\underline{\mathbf{Y}}, \underline{\dot{\mathbf{Y}}}, \theta)$$

where

$$\underline{\mathbf{T}}^e = \psi_{\underline{\mathbf{Y}}} \qquad \text{and} \qquad \underline{\underline{\mathbf{T}}^d \bullet \underline{\dot{\mathbf{Y}}}} \geq 0.$$

Energy dissipation

Material modeling: Bond-based materials

• The simplest assumption is that all the bonds are independent.

$$W(\underline{\mathbf{Y}}) = \int_{\mathcal{H}} \psi(\underline{e}\langle\boldsymbol{\xi}\rangle,\boldsymbol{\xi}) \ dV_{\boldsymbol{\xi}}, \qquad \underline{e}\langle\boldsymbol{\xi}\rangle = |\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle| - |\boldsymbol{\xi}|$$
$$\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle = \psi'(\underline{e}\langle\boldsymbol{\xi}\rangle,\boldsymbol{\xi})\mathbf{M}, \qquad \mathbf{M} = \frac{\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle}{|\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle|}$$

• Equation of motion simplifies to

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}', \mathbf{x}) \ dV_{\mathbf{x}} + \mathbf{b}(\mathbf{x}, t),$$
$$\mathbf{f}(\mathbf{x}', \mathbf{x}) = (\psi'(\underline{e}\langle\boldsymbol{\xi}\rangle, \boldsymbol{\xi}) + \psi'(\underline{e}\langle\boldsymbol{\xi}\rangle, -\boldsymbol{\xi}))\mathbf{M}$$

Material modeling: Bond-based materials, ctd.

- The body is a network of independent, nonlinear springs.
- Material response is described by a graph of bond force vs. bond extension.
- If the material is isotropic, the Poisson ratio = 1/4 (!).

Material modeling: Bond-based materials, ctd.

- Special case: fiber reinforced composite lamina.
- Bonds in the fiber direction are stiffer than the others.

$$\mathbf{f}(\mathbf{x}', \mathbf{x}) = (c_1 + c_2 \Delta (x_2' - x_2)) \underline{e} \langle \mathbf{x}' - \mathbf{x} \rangle \mathbf{M}$$

Material modeling: Bond-pair materials

ullet Suppose every bond $oldsymbol{\xi}$ has a friend $oldsymbol{\eta}=oldsymbol{\chi}(oldsymbol{\xi}).$ The material responds to the deformation of pairs of bonds.

$$W(\underline{\mathbf{Y}}) = \int_{\mathcal{H}} \psi(\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle, \underline{\mathbf{Y}}\langle\boldsymbol{\eta}\rangle, \boldsymbol{\xi}, \boldsymbol{\eta}) \ dV_{\boldsymbol{\xi}}$$

where ψ is a function of four vectors:

$$\psi(\mathbf{p}, \mathbf{q}, \boldsymbol{\xi}, \boldsymbol{\eta}).$$

Material modeling: Bond-pair materials, ctd.

• Fréchet derivative yields

$$\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle = \psi_{\mathbf{p}}\big(\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle,\underline{\mathbf{Y}}\langle\boldsymbol{\chi}(\boldsymbol{\xi})\rangle,\boldsymbol{\xi},\boldsymbol{\chi}(\boldsymbol{\xi})\big) + \psi_{\mathbf{q}}\big(\underline{\mathbf{Y}}\langle\boldsymbol{\chi}^{-1}(\boldsymbol{\xi})\rangle,\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle,\boldsymbol{\chi}^{-1}(\boldsymbol{\xi}),\boldsymbol{\xi}\big)J^{-1}$$
 where

$$J = |\det \operatorname{grad} \boldsymbol{\chi}|$$

Material modeling: Bond-pair materials, ctd.

• Specific case:

$$\chi(\boldsymbol{\xi}) = -\boldsymbol{\xi}$$

$$\psi(\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle,\underline{\mathbf{Y}}\langle\boldsymbol{\eta}\rangle,\boldsymbol{\xi},\boldsymbol{\eta}) = \frac{c}{4}(\theta - \pi)^{2}, \qquad \theta = \cos^{-1}\frac{\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle\cdot\underline{\mathbf{Y}}\langle\boldsymbol{\eta}\rangle}{|\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle| |\underline{\mathbf{Y}}\langle\boldsymbol{\eta}\rangle|}$$

$$\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle = \frac{c(\pi - \theta)}{|\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle|}\mathbf{m}(\boldsymbol{\xi})$$

$$\mathbf{m}(\boldsymbol{\xi}) = \text{unit vector } \perp \text{ to } \underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle$$

Material modeling: Bond-pair materials, ctd.

Fascinating facts:

- This material does not respond at all to homogeneous deformation.
- It provides a consistent way to model bending of a one-dimensional beam.
- The standard model for a beam involves introducing a different theory from the continuum theory.

Using a classical stress-strain material model in peridynamics

- ullet Suppose we are given a model for the Piola stress: $oldsymbol{\sigma}(\mathbf{F})$, where $\mathbf{F}=
 abla \mathbf{y}$.
- ullet Want to use this somehow to get a force state. Define an approximate ${f F}$ by

$$ar{\mathbf{F}} = \left[\int_{\mathcal{H}} \underline{\omega} \langle \boldsymbol{\xi} \rangle \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \otimes \boldsymbol{\xi} \ dV_{\boldsymbol{\xi}} \right] \mathbf{K}^{-1}$$

where ω is a given influence function and **K** is the shape tensor:

$$\mathbf{K} = \int_{\mathcal{H}} \underline{\omega} \langle \boldsymbol{\xi} \rangle \boldsymbol{\xi} \otimes \boldsymbol{\xi} \ dV_{\boldsymbol{\xi}}$$

Using a classical stress-strain material model in peridynamics, ctd.

Set

$$\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle = \underline{\omega}\langle\boldsymbol{\xi}\rangle\boldsymbol{\sigma}(\bar{\mathbf{F}})\mathbf{K}^{-1}\boldsymbol{\xi} \qquad \forall\boldsymbol{\xi}$$

- Can show that if $\sigma = \partial W/\partial \mathbf{F}$, then $\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}}$.
- Can also show that if the Cauchy stress tensor is symmetric, i.e.,

$$oldsymbol{ au}^T = oldsymbol{ au} \qquad ext{where} \qquad oldsymbol{ au} = rac{oldsymbol{\sigma}(\mathbf{F})\mathbf{F}^T}{\det\mathbf{F}}$$

then the peridynamic material is nonpolar:

$$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \times \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}} = \mathbf{0} \qquad \forall \underline{\mathbf{Y}}.$$

Fluids

• Define a nonlocal dilatation based on the mean bond extension:

$$\vartheta = \frac{3}{m}\underline{\omega x} \bullet \underline{e}$$

where

$$\underline{x}\langle \boldsymbol{\xi} \rangle = |\boldsymbol{\xi}|, \qquad m = \underline{\omega}\underline{x} \bullet \underline{x}, \qquad \underline{e}\langle \boldsymbol{\xi} \rangle = |\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle| - \underline{x}\langle \boldsymbol{\xi} \rangle.$$

• Writing this out in detail:

$$\vartheta = \frac{3}{m} \int_{\mathcal{H}} \underline{\omega} \langle \boldsymbol{\xi} \rangle |\boldsymbol{\xi}| \left(|\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle| - |\boldsymbol{\xi}| \right) dV_{\boldsymbol{\xi}}.$$

• Constitutive model: $W(\vartheta)$.

Fluids, ctd.

Nonlocal dilatation:

$$\vartheta(\underline{\mathbf{Y}}) = \frac{3}{m} \int_{\mathcal{H}} \underline{\omega} \langle \boldsymbol{\xi} \rangle |\boldsymbol{\xi}| \left(|\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle| - |\boldsymbol{\xi}| \right) dV_{\boldsymbol{\xi}}.$$

Fréchet derivative of dilatation: observe

$$\vartheta(\underline{\mathbf{Y}} + \delta \underline{\mathbf{Y}}) = \frac{3}{m} \int_{\mathcal{H}} \underline{\omega} \langle \boldsymbol{\xi} \rangle |\boldsymbol{\xi}| \left(|\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle + \delta \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle| - |\boldsymbol{\xi}| \right) dV_{\boldsymbol{\xi}}
= \frac{3}{m} \int_{\mathcal{H}} \underline{\omega} \langle \boldsymbol{\xi} \rangle |\boldsymbol{\xi}| \left(|\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle| + \frac{\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle|} \cdot \delta \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle - |\boldsymbol{\xi}| \right) dV_{\boldsymbol{\xi}}
= \vartheta(\underline{\mathbf{Y}}) + \frac{3}{m} \int_{\mathcal{H}} \underline{\omega} \langle \boldsymbol{\xi} \rangle |\boldsymbol{\xi}| \left(\frac{\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle}{|\underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle|} \cdot \delta \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \right) dV_{\boldsymbol{\xi}}$$

hence

$$\vartheta_{\underline{\mathbf{Y}}} = \frac{3}{m} \underline{\omega x \mathbf{M}} \quad \text{where} \quad \underline{\mathbf{M}} = \frac{\underline{\mathbf{Y}}}{|\underline{\mathbf{Y}}|}.$$

 $\mathbf{M}\langle oldsymbol{\xi}
angle$ is the deformed bond direction

Fluids, ctd.

- Constitutive model is $W(\vartheta)$.
- Now can write down the force state: chain rule implies

$$\underline{\hat{\mathbf{T}}}(\underline{\mathbf{Y}}) = W_{\underline{\mathbf{Y}}}(\vartheta(\underline{\mathbf{Y}})) = \frac{dW}{d\vartheta}(\vartheta(\underline{\mathbf{Y}}))\vartheta_{\underline{\mathbf{Y}}} = \frac{dW}{d\vartheta}(\vartheta(\underline{\mathbf{Y}})) \frac{3\omega x \mathbf{M}}{m}.$$

- Nonlocal pressure $= -dW/d\vartheta$.
- Bond forces are parallel to the deformed bonds (material is ordinary).

Material modeling: Discrete particles

• The family of x could be either continuous or a collection of point masses or other objects.

 $\Delta =$ 3D Dirac delta function

Material modeling: Discrete particles, ctd.

ullet Consider a set of atoms that interact through an $N-{\sf body}$ potential:

$$U(\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_N),$$

 $\mathbf{y}_1, \dots, \mathbf{y}_N = \text{deformed positions, } \mathbf{x}_1, \dots, \mathbf{x}_N = \text{reference positions.}$

• This can be represented exactly as a peridynamic body.

Material modeling: Discrete particles, ctd.

Define a peridynamic body by:

$$\hat{W}(\underline{\mathbf{Y}}, \mathbf{x}) = \Delta(\mathbf{x} - \mathbf{x}_0) U(\underline{\mathbf{Y}} \langle \mathbf{x}_1 - \mathbf{x}_0 \rangle, \underline{\mathbf{Y}} \langle \mathbf{x}_2 - \mathbf{x}_0 \rangle, \dots, \underline{\mathbf{Y}} \langle \mathbf{x}_N - \mathbf{x}_0 \rangle),$$

$$\rho(\mathbf{x}) = \sum_i \Delta(\mathbf{x} - \mathbf{x}_i) M_i$$

Material modeling: Discrete particles, ctd.

ullet After evaluating the Frechet derivative $\underline{\mathbf{T}}$, find

$$\underline{\mathbf{T}}[\mathbf{x}]\langle \boldsymbol{\xi} \rangle = \Delta(\mathbf{x} - \mathbf{x}_0) \sum_{i} \frac{\partial U}{\partial \mathbf{y}_i} \Delta(\boldsymbol{\xi} - (\mathbf{x}_i - \mathbf{x}_0))$$

Equation of motion reduces to

$$M_i \ddot{\mathbf{y}}(\mathbf{x}_i, t) = -\frac{\partial U}{\partial \mathbf{y}_i}, \qquad i = 1, \dots, N$$

• Have represented a multibody potential exactly within a continuum model.

Linearization of a material model

ullet Small displacement field ${f u}$ superposed on a (possibly) large deformation ${f y}^0$:

$$\underline{\hat{\mathbf{T}}}(\underline{\mathbf{Y}}^0 + \underline{\mathbf{U}}) = \underline{\hat{\mathbf{T}}}(\underline{\mathbf{Y}}^0) + \underline{\mathbb{K}} \bullet \underline{\mathbf{U}} + o(||\underline{\mathbf{U}}||)$$

where

$$\underline{\mathbf{Y}}^{0}\langle \mathbf{x}' - \mathbf{x} \rangle = \mathbf{y}(\mathbf{x}') - \mathbf{y}(\mathbf{x})$$

$$\underline{\mathbf{U}}\langle \mathbf{x}' - \mathbf{x} \rangle = \mathbf{u}(\mathbf{x}') - \mathbf{u}(\mathbf{x})$$

$$\underline{\mathbb{K}} = \hat{\mathbf{T}}_{\underline{\mathbf{Y}}}(\underline{\mathbf{Y}}^{0})$$

• $\underline{\mathbb{K}}\langle \boldsymbol{\xi}, \boldsymbol{\zeta} \rangle$ is a *double state* (tensor valued function of two bonds):

$$(\underline{\mathbb{K}} \bullet \underline{\mathbf{U}})\langle \boldsymbol{\xi} \rangle = \int_{\mathcal{H}} \underline{\mathbb{K}} \langle \boldsymbol{\xi}, \boldsymbol{\zeta} \rangle \ \underline{\mathbf{U}} \langle \boldsymbol{\zeta} \rangle \ dV_{\boldsymbol{\zeta}}$$

Linearization of an elastic material model

• If $\hat{\mathbf{T}}$ is elastic,

$$\underline{\mathbb{K}} = \hat{\underline{\mathbf{T}}}_{\underline{\mathbf{Y}}}(\underline{\mathbf{Y}}^0) = W_{\underline{\mathbf{Y}}\underline{\mathbf{Y}}}(\underline{\mathbf{Y}}^0)$$

i.e., $\underline{\mathbb{K}}$ is the second Fréchet derivative of W.

• Can show that for a linearized elastic material,

$$\underline{\mathbb{K}}\langle \boldsymbol{\zeta}, \boldsymbol{\xi} \rangle = \underline{\mathbb{K}}^T \langle \boldsymbol{\xi}, \boldsymbol{\zeta} \rangle \qquad \forall \boldsymbol{\xi}, \boldsymbol{\zeta}$$

- Converse is also true.
- ullet is called the $modulus\ state$, similar to 4th order elasticity tensor.

Equation of motion for a linearized material

• If y^0 is equilibrated,

$$\rho\ddot{\mathbf{u}}(\mathbf{x}) = \int (\underline{\mathbf{T}}[\mathbf{x}]\langle \mathbf{p} - \mathbf{x}\rangle - \underline{\mathbf{T}}[\mathbf{p}]\langle \mathbf{x} - \mathbf{p}\rangle) \ dV_{\mathbf{p}} + \mathbf{b}(\mathbf{x})$$

$$= \int ((\underline{\mathbb{K}}[\mathbf{x}] \bullet \underline{\mathbf{U}}[\mathbf{x}])\langle \mathbf{p} - \mathbf{x}\rangle - (\underline{\mathbb{K}}[\mathbf{p}] \bullet \underline{\mathbf{U}}[\mathbf{p}])\langle \mathbf{x} - \mathbf{p}\rangle) \ dV_{\mathbf{p}} + \mathbf{b}(\mathbf{x})$$

$$= \int \int (\underline{\mathbb{K}}[\mathbf{x}]\langle \mathbf{p} - \mathbf{x}, \mathbf{q} - \mathbf{x}\rangle(\mathbf{u}(\mathbf{q}) - \mathbf{u}(\mathbf{x})) - \underline{\mathbb{K}}[\mathbf{p}]\langle \mathbf{x} - \mathbf{p}, \mathbf{q} - \mathbf{p}\rangle(\mathbf{u}(\mathbf{q}) - \mathbf{u}(\mathbf{p}))) \ dV_{\mathbf{q}} \ dV_{\mathbf{p}} + \mathbf{b}(\mathbf{x})$$

$$= \int \mathbf{C}(\mathbf{x}, \mathbf{q})(\mathbf{u}(\mathbf{q}) - \mathbf{u}(\mathbf{x})) \ dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$$

where

$$\mathbf{C}(\mathbf{x}, \mathbf{q}) = \int \left(\underline{\mathbb{K}}[\mathbf{x}] \langle \mathbf{p} - \mathbf{x}, \mathbf{q} - \mathbf{x} \rangle - \underline{\mathbb{K}}[\mathbf{p}] \langle \mathbf{x} - \mathbf{p}, \mathbf{q} - \mathbf{p} \rangle + \underline{\mathbb{K}}[\mathbf{q}] \langle \mathbf{x} - \mathbf{q}, \mathbf{p} - \mathbf{q} \rangle \right) dV_{\mathbf{p}}$$

Equation of motion for a linearized material

• Equation of motion:

$$\rho \ddot{\mathbf{u}}(\mathbf{x}) = \int \mathbf{C}(\mathbf{x}, \mathbf{q}) (\mathbf{u}(\mathbf{q}) - \mathbf{u}(\mathbf{x})) \ dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$$

where

$$\mathbf{C}(\mathbf{x}, \mathbf{q}) = \int \left(\underline{\mathbb{K}}[\mathbf{x}] \langle \mathbf{p} - \mathbf{x}, \mathbf{q} - \mathbf{x} \rangle - \underline{\mathbb{K}}[\mathbf{p}] \langle \mathbf{x} - \mathbf{p}, \mathbf{q} - \mathbf{p} \rangle + \underline{\mathbb{K}}[\mathbf{q}] \langle \mathbf{x} - \mathbf{q}, \mathbf{p} - \mathbf{q} \rangle \right) dV_{\mathbf{p}}$$

• Similar structure to linear *bond-based* equation of motion but **C** has different symmetry:

$$\mathbf{C}(\mathbf{q},\mathbf{x})=\mathbf{C}^T(\mathbf{x},\mathbf{q})$$
 ...state-based $\mathbf{C}(\mathbf{q},\mathbf{x})=\mathbf{C}(\mathbf{x},\mathbf{q})$ and $\mathbf{C}(\mathbf{x},\mathbf{q})=\mathbf{C}^T(\mathbf{x},\mathbf{q})$...bond-based

frame 65

Stability of a jump perturbation

• Write the linearized equation of motion as:

$$\rho \ddot{\mathbf{u}}(\mathbf{x}) = \int \mathbf{C}(\mathbf{x}, \mathbf{q}) \mathbf{u}(\mathbf{q}) \ dV_{\mathbf{q}} - \mathbf{P}(\mathbf{x}) \mathbf{u}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$$

where \mathbf{P} is the symmetric tensor defined by

$$\mathbf{P}(\mathbf{x}) = \int \mathbf{C}(\mathbf{x}, \mathbf{q}) \ dV_{\mathbf{q}} = \int \int \underline{\mathbb{K}}[\mathbf{x}] \langle \mathbf{p} - \mathbf{x}, \mathbf{q} - \mathbf{x} \rangle \ dV_{\mathbf{p}} \ dV_{\mathbf{q}}$$

- ullet Consider a small superposed displacement field ${f u}$ containing a jump across a surface $\Gamma.$
- $\bullet \ \mathsf{Define} \ [[u]] = u^+ u^-.$

Stability of a jump perturbation, ctd.

• Write the equation of motion on each side of the jump $(\mathbf{b} = \mathbf{0})$:

$$\rho \ddot{\mathbf{u}}^+ = \int \mathbf{C}(\mathbf{x}^+, \mathbf{q}) \mathbf{u}(\mathbf{q}) \ dV_{\mathbf{q}} - \mathbf{P}(\mathbf{x}^+) \mathbf{u}^+$$

$$\rho \ddot{\mathbf{u}}^- = \int \mathbf{C}(\mathbf{x}^-, \mathbf{q}) \mathbf{u}(\mathbf{q}) \ dV_{\mathbf{q}} - \mathbf{P}(\mathbf{x}^-) \mathbf{u}^-$$

• C and P are continuous. Subtract.

$$\rho[[\ddot{\mathbf{u}}]] = -\mathbf{P}[[\mathbf{u}]]$$

$$\rho[[\ddot{\mathbf{u}}]] \cdot [[\mathbf{u}]] = -\mathbf{P} \big| [[\mathbf{u}]] \big|^2$$

• The jump grows if $[[\ddot{\mathbf{u}}]] \cdot [[\mathbf{u}]] > 0$. This can happen if \mathbf{P} has a negative eigenvalue.

Crack nucleation condition

• Let the eigenvalues of $\mathbf{P}(\mathbf{x})$ be denoted $\{P_1, P_2, P_3\}$ and define the *stability index* by

$$Z(\mathbf{x}) = \min \{P_1, P_2, P_3\}.$$

- If $Z(\mathbf{x}) < 0$ then a crack can nucleate at \mathbf{x} .
- \bullet $Z(\mathbf{x})$ depends only on the material properties at \mathbf{x} .

Materials with a damage variable

ullet Assume there is a scalar $\ \ damage \ state \ \underline{\phi}$ such that

$$\psi = \psi(\underline{\mathbf{Y}}, \theta, \underline{\phi})$$
 and $\underline{\dot{\phi}} \geq 0$. Damage is irreversible.

• Repeat C-N argument to find that we still have (for h=r=0)

$$\underline{\mathbf{T}} = \psi_{\underline{\mathbf{Y}}} \qquad \text{and} \qquad \eta = -\psi_{ heta}$$

but now also have

$$\psi_{\underline{\phi}} \le 0$$

and

$$ar{\eta} = rac{\psi_d}{ heta} \qquad ext{where}$$

$$\dot{\eta} = rac{\dot{\psi}_d}{ heta} \qquad ext{where} \qquad rac{\dot{\psi}_d := -\psi_{\underline{\phi}} ullet \dot{\phi}}{1}.$$

Energy dissipation

Damage evolution laws

• $\phi\langle \xi \rangle$ is the damage in bond ξ (at some x), determined by a damage evolution law:

$$\underline{\phi} = \underline{D}(\underline{\mathbf{Y}}, \underline{\dot{\mathbf{Y}}}, \dots)$$

• If $\underline{\mathbf{T}}\langle \boldsymbol{\xi} \rangle = \mathbf{0}$ whenever $\underline{\phi}\langle \boldsymbol{\xi} \rangle = 1$, the material has *strong* damage dependence (otherwise *weak*).

Damage evolution laws Example: bond breakage

• Define the bond extension state by

$$\underline{e}\langle \boldsymbol{\xi} \rangle = |\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle| - |\boldsymbol{\xi}|.$$

Suppose

$$\underline{D}\langle \boldsymbol{\xi} \rangle = H(\underline{e}_0\langle \boldsymbol{\xi} \rangle, e_b)$$

where H=Heaviside step function and

$$\underline{e}_0\langle\boldsymbol{\xi}\rangle = \max_t \langle\boldsymbol{\xi}\rangle.$$

Damage in bond ξ jumps from 0 to 1 when its elongation exceeds the critical elongation e_b .

Damage in a constitutive model: have to be consistent with nonpolarity

ullet Cannot in general do the following with a nonordinary material model ${f T}^0$:

$$\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle = (1 - \underline{\phi}\langle\boldsymbol{\xi}\rangle)\underline{\mathbf{T}}^0\langle\boldsymbol{\xi}\rangle$$

because the resulting model may fail to be nonpolar.

Four typical bonds in a nonordinary material

Breaking a bond results in a net moment - No longer nonpolar

Damage in a constitutive model: strong damage

ullet Suppose we have an elastic material with strain energy function $W=W^0(e).$ Then

$$\underline{\mathbf{T}}^0 = W_{\underline{\mathbf{Y}}} = W_{\underline{e}}^0 \underline{\mathbf{M}}, \qquad \underline{\mathbf{M}} = \frac{\underline{\mathbf{Y}}}{|\underline{\mathbf{Y}}|}$$

• Define a material by

$$\psi(\underline{\mathbf{Y}},\underline{\phi}) = W^0((1-\underline{\phi})\underline{e}).$$

• Then

$$\underline{\mathbf{T}} = (1 - \underline{\phi})\underline{\mathbf{T}}^0$$

- Each bond has its force reduced by $1 \underline{\phi} \langle \boldsymbol{\xi} \rangle$.
- ullet ψ is still objective so model is still nonpolar.

Damage in a constitutive model: separable damage

• Start with $W=W^0(\underline{\mathbf{Y}})$. Then

$$\underline{\mathbf{T}}^0 = W_{\underline{\mathbf{Y}}}^0$$

Define a material by

$$\psi(\underline{\mathbf{Y}},\underline{\phi}) = \Phi(\underline{\phi})W^0(\underline{\mathbf{Y}})$$

where

$$\Phi(\underline{\phi}) = \frac{1}{V} \int_{\mathcal{H}} (1 - \underline{\phi} \langle \boldsymbol{\xi} \rangle)^2 dV_{\boldsymbol{\xi}}.$$

• Find

$$\underline{\mathbf{T}} = \Phi(\phi)\underline{\mathbf{T}}^0$$

 \bullet All the bond forces are multiplied by the same $\Phi(\underline{\phi}).$

Changing the length scale in a material model

- Suppose we want to change the horizon from δ_0 to δ_1 . Require the rescaled energy to be the same as the original W_0 if the deformation is homogeneous.
- The rescaled material model is

$$W_1(\underline{\mathbf{Y}}) = W_0(\underline{\mathbf{E}})$$

where $\underline{\mathbf{E}}$ is a state defined by

$$egin{aligned} \underline{\mathbf{E}}\langleoldsymbol{\xi}
angle &= rac{\delta_0}{\delta_1} \underline{\mathbf{Y}}\langleoldsymbol{\xi}
angle \end{aligned}$$

• Can show the force state scales according to

$$\underline{\mathbf{T}}_1(\underline{\mathbf{Y}}) = \left(\frac{\delta_1}{\delta_0}\right)^4 \underline{\mathbf{T}}_0(\underline{\mathbf{E}})$$

Changing the length scale also changes the time scale

• Removing the small length scale also removes the high frequencies that characterize that length scale.

$$\delta_1 > \delta_0 \implies \omega_1 < \omega_0$$

Peridynamic stress tensor

In any peridynamic body, we can define a tensor field u such that:

ullet The force per unit area at ${f x}$ through a plane with normal ${f n}$ is

$$s = \nu(x)n$$

• The peridynamic equation of motion can be written as

$$\rho \ddot{\mathbf{u}} = \operatorname{div} \boldsymbol{\nu} + \mathbf{b}$$

i.e.,

$$\operatorname{div} \boldsymbol{\nu}(\mathbf{x}) = \int \mathbf{f}(\mathbf{x}', \mathbf{x}) \ dV_{\mathbf{x}'}$$

Peridynamic stress tensor, ctd.

• The peridynamic stress tensor is given by

$$\boldsymbol{\nu}(\mathbf{x}) = \int_{\mathcal{S}} \int_{0}^{\infty} \int_{0}^{\infty} (y+z)^{2} \left((\underline{\mathbf{T}}[\mathbf{x}-z\mathbf{m}]\langle (y+z)\mathbf{m}\rangle) \otimes \mathbf{m} \right) dz dy d\Omega_{\mathbf{m}}$$

where ${\mathcal S}$ is the unit sphere and Ω is solid angle.

ullet v sums up the forces in bonds that go through x.

Convergence of peridynamics to the standard theory

Suppose the deformation is twice continuously differentiable. If the horizon is small, the deformation state is well approximated by

$$\underline{\mathbf{Y}}\langle\boldsymbol{\xi}\rangle \approx (\nabla \mathbf{y})\boldsymbol{\xi}$$

so we can write

$$W(\underline{\mathbf{Y}}) \approx W_c(\nabla \mathbf{y})$$

and it can be proven that

$$\mathbf{\nu} pprox \frac{\partial W_c}{\partial \nabla \mathbf{y}}$$

so ν is basically a Piola-Kirchhoff stress tensor in a classical hyperelastic solid.

